
Enable Modules
on Windows

Vaibhav Garg
Google Summer of Code’ 20

Mentors:
Vassil Vassilev & Bertrand Bellenot

ROOT

● ROOT is a modular scientific software toolkit. It provides the

functionalities needed to deal with big data processing,

statistical analysis, visualization, and storage.

● It is a core software used in HEP not only for data analysis

but also as a backend for LHC experiment’s software such as

CMSSW.

Modules

What are they?
● Software is built using libraries (system + third-party).

● In C, we access the libraries using #include <SomeLib.h>

● Modules provide an alternate, simple way to access libraries.

What do they provide?
● Better compile-time scalability.

● Elements problems inherent to using the C preprocessor to access

the API of a library.

Why switch?

Problems with #include

● Compile-time scalability.

○ Every time a header is included, it’s contents need to be parsed.

○ For example, say, you have a project with M translation units

each having N header files in each unit, the compiler needs to

perform M x N level of work.

○ This is worse in C++, as support for templates forces a large

amount of code in each header.

Why switch?

Problems with #include

● Compile-time scalability.

● Fragility

○ #include directive is treated as textual inclusion.

○ They are, therefore, subject to any active macro definitions at

the time of inclusion.

○ If any of the active macro definitions happens to collide with a

name in the library, it causes failures.

○ Workarounds possible, ex: Include guards.

Why switch?

Problems with #include

● Compile-time scalability.

● Fragility

● Tool Confusion

○ In a C-based language, it is hard to develop tools, because the

boundaries of the libraries are not clear.

○ Which headers belong to a particular library, and in what order

should those headers be included?

○ Are the headers C, C++ or Objective-C++?

How do Modules solve these
issues?
Semantic Import

 import std.io ; // pseudo-code

Modules improve access to the API of software libraries by
replacing the textual preprocessor inclusion model with a
more robust, more efficient semantic model.

There is only a minor change in the user’s perspective, but the
import declarations behave quite differently.

How do Modules solve these
issues?
Semantic Import

 import std.io ; // pseudo-code

When the compiler sees the module import above, it loads a
binary representation of the std.io module and makes its API
available to the application directly.

So, essentially, we create a binary representation of each
header file once, and just load it whenever required.

How do Modules solve these
issues?
Benefits

● Each module is compiled only once, so the earlier problem of
O(M x N) problem of compilation is reduced to O(M + N).

● Each module is parsed as a standalone entity, so it has a
consistent preprocessor environment.

● Modules describe the API of software libraries, therefore,
tools can rely on the module definition to ensure that they
get the complete API for the library.

C++ Modules in ROOT

● The ROOT v6.16 release came with a preview of the

module technology.

● C++ Modules are default in ROOT, starting from v6.20 in

UNIX and v6.22 in OS X.

● This project aimed to extend the support of C++ Modules

of ROOT to Windows.

Why is Windows different?

● Windows uses MSVC (Microsoft Visual C++), instead of

commonly used GCC in Unix based systems.

● MSVC has an absence of C99 support.

● Also, several GCC specific headers are not present in

MSVC. Ex: bits/allocator.h and likewise.

● MSVC allows many invalid constructs in class templates
that Clang has historically rejected.

Major Changes

New Modulemap files for Standard Library of Windows

● Each module needs to have a corresponding modulemap,
which describes how a collection of existing headers maps on
to the (logical) structure of a module.

● Since the file structure of libraries present in MSVC is
different from Unix, there was a need to have different
modulemap files for Windows.

● The new modulemap files are now closely related to the
actual structure of libraries present in MSVC.

Major Changes

Merge Two Decl’s successfully when Inheritable attributes
are present. (Clang)

● In Clang, during the formation of AST, there are certain
attributes of a Declaration that are needed to be present in
the redeclaration chain.

● This was usually done during ASTReading, but was somehow
not done in the case of Inheritable Attributes.

● A patch was submitted to Clang (Backported to ROOT) in
order to fix this issue.

Major Changes

Correctly parse LateParsedTemplates (Clang)

● In Clang, when template instantiations from dependent
modules were read, it was assumed that the Local DeclID,
and Global DeclID is consistent.

● However, in practice, it was not the case, which led to DeclID
confusion while parsing them.

● A patch was submitted to Clang to fix this issue. (Under
review).

Major Changes

Teach DLM to recognise symbols in COFF Object Files

● All the symbol lookup of ROOT is handled by the

DynamicLibraryManager.

● On Windows, all the symbols are present inside the COFF

Object File Format, which the DLM did not understand

previously.

Other Changes

● Several other changes were made in ROOT, which were

related to small bugs present in the codebase that were

discovered from time to time.

● Also, there were some issues which were related to

non-compatibility of Windows and Unix and were

appropriately handled.

Results

● We are now able to successfully build ROOT on Windows

with C++ modules enabled.

● 65% of the tests are currently passing.

● Some more minor issues are needed to be fixed in order

to make Modules default on Windows.

Next steps

Fix issues with the Jenkins build system.
2 build nodes are currently unable to build on Windows with C++
Modules enabled.

Diagnose the failing tests
Diagnose and resolve the remaining 35% tests.

Make C++ Modules default on Windows.

Specific List of Future Work.
Issues with Builds:

● Debug the buildbot failure on lcgapp-win10-65.cern.ch and

lcgapp-win10-64.cern.ch.

● Debug the SourceLocation overflow offset issue.

We will then have a working modules build of ROOT on Windows. After

this, we need to fix the tests, the major failures are associated with:

● 'definition with same mangled name as another definition' issue.

● 'got exit code Access violation but expected 0' issue.

● ‘No curly at claimed position of opening curly!’ issue.

Questions?

