
C++ as a service — rapid software development and
 dynamic interoperability with Python and beyond

07.10.2021

Interactive C++: A Language InterOp Layer
Vassil Vassilev

Interactive C++: A Language InterOp Layer, V. VassilevCaaS Monthly, Oct, 2021

Motivation

✤ The C++ programming language is used for many numerically intensive
scientific applications.

✤ C++ is often seen as difficult to learn and inconsistent with rapid
application development

✤ The use of new programming languages has grown steadily in science and
in fact Python is the language of choice for data science and application
control but its computational performance is mediocre

Is there a way to combine the expressiveness of Python and the power of C++?
2

Interactive C++: A Language InterOp Layer, V. VassilevCaaS Monthly, Oct, 2021

Classification of Prior Work

✤ Static binding generators — SWIG, SIP, Boost.Python, CxxWrap.jl
They rely on limited parsers and limited type introspection to generate wrapper functions which
the other language knows how to call. Advanced C++ features such as reference counting are
hard to support.

✤ Dynamic/Automatic bindings — cppyy, Cxx.jl
They operate on demand and generate only what’s necessary when necessary. They rely on a
compiler available at program runtime: cling and the Julia JIT respectively. They are efficient and
can support about advanced C++ features such as template instantiation. Harder to implement.

How to define to whether two languages are interoperable?
3

Interactive C++: A Language InterOp Layer, V. VassilevCaaS Monthly, Oct, 2021

Dynamic/Automatic bindings

✤ Move the binding provider responsibility from developer space to user
space.

4

Cppyy - Wim Lavrijsen, LBL, CaaS Monthly, Sep 2021 Cxx.jl - Keno Fischer, JuliaComputing, CaaS Monthly, Aug 2021

https://compiler-research.org/assets/presentations/W_Lavrijsen-CaaS_Cppyy.pdf
https://compiler-research.org/assets/presentations/K_Fischer_Cxx_jl.pdf

Interactive C++: A Language InterOp Layer, V. VassilevCaaS Monthly, Oct, 2021

Goals

Create a C++ language interoperability layer allowing efficient dynamic/
automatic bindings with Python but also for D, Julia, etc…

✤ Create a document which describes prior art (cppyy and cxx.jl) and
enumerates key features

✤ Implement a proof of concept which is able to instantiate a C++ template
on the fly from within Python

✤ Rebase Cppyy (possibly Cxx.jl) on top the new implementation and
measure efficiency

5

Interactive C++: A Language InterOp Layer, V. VassilevCaaS Monthly, Oct, 2021

Definitions

For the purposes of the document we define:
✤ Introspection — the ability of the program to examine itself. The program

should be able to answer the general question “What am I”?
✤ Reflection — the ability for a program to modify itself (including its

behavior and its state).
✤ [Unqualified] Name lookup — the ability of the compiler to “find” by name

internal objects representing C++ entities.
✤ Template instantiation — the ability of the compiler to produce a concrete

entity from a template pattern (template<class T> T f(){} -> int f() {})
6

Interactive C++: A Language InterOp Layer, V. VassilevCaaS Monthly, Oct, 2021

Template Instantiation on Demand

Dynamic tools which rely on clang can instantiate a template using the low-
level libClang API. In Cling we can do:

7

[cling] struct S{};
[cling] cling::LookupHelper& LH = gCling->getLookupHelper()
(cling::LookupHelper &) @0x7fcba3c0bfc0
[cling] auto D = LH.findScope("std::vector<S>",
 cling::LookupHelper::DiagSetting::NoDiagnostics)
(const clang::Decl *) 0x1216bdcd8
[cling] D->getDeclKindName()
(const char *) "ClassTemplateSpecialization"

Inefficient

Instable

Interactive C++: A Language InterOp Layer, V. VassilevCaaS Monthly, Oct, 2021

C++ Name Lookup

In the following the following Python construct, the python interpreter will:
✤ Make a lookup for “val”, “std”, “vector” and “int”.
✤ Each unsuccessful name lookup will result in a callback which can introduce

a name

8

val = std.vector[int]((1,2,3))

Every unsuccessful lookup can be
completed by a C++ entity connected

to a python class wrapper.

While parsing we can associate each construct with a C++ entity

Interactive C++: A Language InterOp Layer, V. VassilevCaaS Monthly, Oct, 2021

C++ Templates

✤ It is challenging when supporting type systems that are less strict than C++
✤ Expression templates are challenging

9

val = std.vector[int]((1,2,3))

int in python means integral type and it
needs to be mapped to short, int,

unsigned int…

At the end of the statement, the interoperability layer will instantiate the C++ template
std::vector<int> and initialize it with values 1,2,3

Interactive C++: A Language InterOp Layer, V. VassilevCaaS Monthly, Oct, 2021

Overloads

When lookups return multiple candidates we need to implement a selection
process:
✤ The default C++ overload resolution may not be best. (Eg. Python does

not have a notion of const)
✤ Allow binding coded to handle overload resolution if required

10

Interactive C++: A Language InterOp Layer, V. VassilevCaaS Monthly, Oct, 2021

Challenges

✤ Every language defines rules according to its design principles.
✤ An interoperability layer is a bridge between two languages as well as their

design principles.
✤ The C++ type system has evolved over the years and has many

performance-related aspects (eg const is part of overload resolution).
✤ How to define to whether two languages are sufficiently interoperable?

11

Interactive C++: A Language InterOp Layer, V. VassilevCaaS Monthly, Oct, 2021

Proof of Concept

✤ Demo

12

Interactive C++: A Language InterOp Layer, V. VassilevCaaS Monthly, Oct, 2021

Proposed Implementation

Using the pimpl pattern can help improve API stability
13

enum EntityKind {
 NamedDecl, TagDecl, NamespaceDecl, ...
};

using OpaqueCxxDecl = void*;

struct CxxEntity { // meant to expose parts of clang::Decl
 EntityKind Kind;
 constexpr auto name = "...";
 constexpr auto name_as_written = "...";
 constexpr auto value = "";
 CxxOpaqueDecl details; // pimpl
};

std::string getQualifiedNameAsString(OpaqueCxxDecl CxxD);

Interactive C++: A Language InterOp Layer, V. VassilevCaaS Monthly, Oct, 2021

Proposed Implementation

Using the per-name lookups improve efficiency
14

using OpaqueCxxLookupResult = void*;
struct CxxLookupResult {
 std::vector<CxxEntity> Decls;
 void *details; // clang::LookupResult
};

CxxLookupResult R = cpp::lookup("std");
auto *StdNamespace = R.Decls[0];
CxxLookupResult R = cpp::lookup("vector", StdNamespace);

...
void DiagnoseAmbiguousOverloads(OpaqueCxxLookupResult R, ...);

Interactive C++: A Language InterOp Layer, V. VassilevCaaS Monthly, Oct, 2021

Call For Action

✤ Many thanks to Wim Lavrijsen (LBL), Axel Naumann (CERN), David Lange
(Princeton), Ioana Ifrim (Princeton), Bernhard Manfred Gruber (CERN,
CASUS, TU Dresden) who contributed to earlier drafts of our work.

✤ Please take a look at the document and add comments. We aim to ‘release’ it
next week.

15

https://docs.google.com/document/d/1d1NZfyv41XHEkZpX8JzKJWAwWR1bqjwlQrCD-XMsDRg/edit?usp=sharing

Thank you!

