
Utilizing Clad
derivatives in RooFit

Garima Singh | Jan - June 2022

Today’s Agenda

Overview

Major preliminary roadblocks

Possible approaches

Expected timeline of work

Overview

RooFit is a library that comes packaged in ROOT, it enables the modelling of event data
distributions and perform further mathematical analysis on it such as likelihood fits, generating
plots etcetera. For all its differentiability needs, RooFit relies solely on numerical differentiation
capabilities of the MathCore library in ROOT. Not only is numerical differentiation less accurate
and more sensitive to errors, it also does not scale well with larger number of parameters.

There was some work done to parallelize the numerical differentiation calculation and it yielded
a significant amount of speedup, but still the other two shortcomings were not mitigated by this
effort.[1]

This is where automatic differentiation comes in.

[1]: https://www.epj-conferences.org/articles/epjconf/abs/2020/21/epjconf_chep2020_06027/epjconf_chep2020_06027.html

1

Overview Cont.

The main idea of this project is to utilize Clad’s automatic differentiation (AD) abilities to

generate derivatives for RooFit. AD based derivatives are more accurate, less sensitive to

numerical errors and also scale well.

2

Preliminary RoadBlocks

01 RooFit is highly optimized for the numerical differentiation use-case. It contains

a fair amount of wrappers and syntactic sugar (necessary for cashing results for

numerical differentiation) over the base elements of the analysis, making it

difficult to expose these values to Clad.

02 RooFit represents all its calculations in the form of objects and compute graphs.
For a fair amount of such objects, extracting the representative C++ code is not
straightforward.

03 How to bridge the Clad runtime and RooFit runtime.

3

Possible Approaches
Interface design

The first way we approached this problem was to see how the different components connect to the
RooFit::RooMinimizer (the place we want to add the clad generated derivatives to).

RooMinimizer

RooMinuitFcn RooMinuitFcnGrad

LikelihoodGradientWrapperLikelihoodWrapperRooAbsReal

Uses to send “Gradient()” to Minuit, can be used to
pass externally generated gradients.

Uses by default, hard-coded to numerical
differentiation.

We implement in each RooAbsReal an “ExecuteGradient” Method
that returns its Gradient or alternatively some representative C++
code (like evaluate()).

A super-optimized RooAbsReal-like object.
Used to wrap over likelihoods and enable
parallel computations (batch mode).

Clad can implement this wrapper to
send the generated derivatives back
to RooMinimizer.

uses uses

Used to send custom
implementations back
to MINUIT

We need this.

We ALSO need this.

How do we get components from
both the code paths?

4

Possible Approaches Contd.
Interface design

RooMinimizer

RooMinuitFcnGrad

LikelihoodGradientWrapperLikelihoodWrapper

Uses to send “Gradient()” to Minuit, can be used to
pass externally generated gradients.

A super-optimized RooAbsReal-like object.
Used to wrap over likelihoods and enable
parallel computations (batch mode).

Clad can implement this wrapper
to send the generated derivatives
back to RooMinimizer.

uses

Used to send custom
implementations back
to MINUIT

…

The first idea was to change the
second codepath to utilize
RooAbsReal Objects instead of
RooAbsL.

However, this would require
reworking the whole
RooMinuitFcnGrad class and also
the LikelihoodGradientJob
interface.

5

Possible Approaches Contd.
Interface design

RooMinimizer

RooMinuitFcn RooMinuitFcnGrad

LikelihoodGradientWrap
perLikelihoodWrapperRooAbsReal

RooMinuitFcnClad

RooAbsReal

Another possible approach is to
duplicate the RooMinuitFcnGrad into
another class that works with
RooAbsReal. This will allow us to
discard the unnecessary abstractions
and other functions.

6

Possible Approaches Contd.
Clad design

For any RooFit code to work with clad, we need to generate the C++ code it represents.
For single objects this is straightforward, however to compress/squash compute graphs
into C++ code becomes slightly complex. After some discussion, we bought the possible
approaches down to 2.

1. Hand write the equivalent C++ code for some commonly appearing
subgraph/clusters in analyses manually.

2. Let Clad squash the graphs by using some predetermined rule.
3. * Use chain rule to calculate the derivatives, given we know the derivative of each

node individually.

7

Possible Approaches Contd.
Clad design

Approach 1

Squash frequently used subgraphs/clusters

into one Roo{xyz} class that implements a

“translate” function. Support calculating only

the derivatives of RooAbsReal objects that

implement the “translate function”.

Approach 2

Use clad to squash the graph by unfolding

nested function calls.

8

Possible Approaches Contd.
Clad design : Approach 1 - Squash frequent clusters manually

While RooFit is a huge codebase with support for a lot of mathematical formulas, it is observed
that in most of the analysis, users end up using only a small set of recurrent RooFit objects. It
may hence be beneficial to squash these frequently appearing classes manually and then simply
implement a function that translates them to C++ code.

Identify frequently occurring clusters

NLL

 GAUSS

RooGaussian::Translate()

+

RooNLL::Translate()

=

RooAutodiffGaussianNLL::Translate()

Manually combine the codes together.

9

Possible Approaches Contd.
Clad design : Approach 1 - Squash frequent clusters manually

Double_t RooGaussian::Translate() const
{
 const double arg = x - mean;
 const double sig = sigma;
 return std::exp(-0.5*arg*arg/(sig*sig));
}

Double_t RooNLLVar::Translate() const
{
 double nll = 0.0;
 for (auto x : *_data)

 nll += -std::log(x);

 return nll;

}

double RooAutodiffGaussianNLL::Translate() const

override {

 double nll = 0.0;

 for (auto x : *_data) {

 double proba = gaus(x, _mean, _sigma);

 nll += -std::log(proba);

 }

 return nll;

 }

clad::gradient(&RooAutodiffGaussianNLL::Translate);

10

Possible Approaches Contd.
Clad design : Approach 2 - Squash graphs using Clad

With how the RooFit computation graphs are computed, we can unfold nested function calls
with the following rule

f(g(x));

f(x) {
double result;
 { // unfold the body of g(x) here
 // For each return,
 // replace it with an assign expression
 // return x + y;
 result = x + y;
 }
 x = result;

}

11

Possible Approaches Contd.
Clad design : Approach 2 - Squash graphs using clad

RooGaussian::Translate(vector<string>&& params) const {
 return “Double_t” + getTempName() + ”;

 {“ + getPrefix(params) +
 “const double arg = x - mean;

 const double sig = sigma;” +
 getTempName() + “= std::exp(-0.5*arg*arg/(sig*sig));

 }”;
}

RooNLLVar::Translate(vector<string>&& params) const {
 return “double “ + getTempName() + “;
 { “ + getPrefix(params) +

“double nll = 0.0;
 // for (auto x : *data)

 nll += -std::log(x);” +

 getTempName() + “= nll;

 }”;

}

RooAutodiffGaussianNLL::getPrefix(

vector<string>&& parameters){

 if(parameters.size() != 0)

 return "double x = " + parameters[0]

 + ", mean =" + parameters[1] +

 ", sigma = " + parameters[2] ";";

 else

 return "";

}

RooNLLVar::getPrefix(vector<string>&& parameters) {
 if(parameters.size() != 0)
 return "double x = " + parameters[0] + ";";

 else

 return "";

}

12

Possible Approaches Contd.
Clad design : Approach 2 - Squash graphs using clad

 double x = gauss_result_0;

NLL

 GAUSS code += RooGaussian::Translate({})

code +=
RooNLLVar::Translate({child[0]->getTempName()
}) + …;

}

{

 double gauss_result_0;

{

 const double arg = x - mean;

 const double sig = sigma;

 gauss_result_0 = std::exp(-0.5*arg*arg/(sig*sig));

}

 double nll_result_0;

 {

 double nll = 0.0;

 nll += -std::log(x);

 nll_result_0 = nll;

 }

13

Expected Timeline of Work

For this month, I will be trying to figure out adding the clone class and running it on a
basic example. It that works out, I will move to automatically generating the squashed
code.

14

Thank you!

Any questions?

