(i++ as a service — rapid software development and
dynamic iteroperability with Python and beyond

Interactive C++: cling and clang-repl

Vassil Vassilev

03.11.2022

Status. Cling

+ Continuing to rebase cling on top of llvm13, fixing Windows.

+ Added initial version of readthedocs-based documentation

Status. Clang-Repl

+ More progress on parsing statements on the global scope: D127284

+ Started a clang-repl based service for Jupyter called xeus-clang-repl

The goal is to provide better stability and robustness which can later cling can
reuse.

https://reviews.llvm.org/D127284
https://github.com/compiler-research/xeus-clang-repl

Status. InterOp

* We can execute basic cppyy worktlows

* Working on simplifying CallFunc and moving it in libInterOp: PR10850

https://github.com/root-project/root/pull/10850

Status. Clad

+ Released v0.1 and integrated in ROOT and the xeus-cling binder

Documentation

+ Working on preparing blog posts for our summer internships

Upstreaming Patches

+ Spreadsheet tracking the progress here.

+ Total amount of upstreamed cling patches 26 out of 52 upstreamable.

https://docs.google.com/spreadsheets/d/1BfQc4lzUFo3p162PJkA3InwiqVgRAbVQSvc0fNVA3n0/edit#gid=0

(LaaS Open Projects

+ Open projects are tracked in our open projects page.

https://compiler-research.org/open_projects

Next Meetings

+ Monthly Meeting — 8th Dec, 1700 CET /0800 PDT

+ Tentative talk by Sunho Kim on clang-repl and orcv2 jit-link
infrastructure

[f you want to share your knowledge / experience with interactive C++ we can
include presentations at an upcoming next meeting

GSoC 2022

Contributors

Surya Somayyajula

IRIS-HEP Fellow, University of
Wisconsin-Madison, USA
Improve Cling’s packaging
system: Cling Packaging
Tool
(May 2022-Sep 2022)

Manish Kausik H

GS0C22, Computer Science and
Engineering(Dual Degree), Indian
Institute of Technology Bhubaneswar

Add Initial Integration of
Clad with Enzyme
(May 2022-Sep 2022)

Matheus Izvekov

GS50C22, Computer Science
Preserve type sugar for

member access on
template specializations

(May 2022-SepNov 2022)

Sunho Kim

GS0C22, De Anza College,
Cupertino, USA

Write JITLink support for
a new format/architecture
(ELF/ AARCH64)
(May 2022-Sep 2022)

Jun Zhang

GS0C22, Anhui Normal University,
WuHu, China
Optimize ROOT use of
modules for large

codebases
(May 2022-Sep 2022)

Anubhab Ghosh

GS0C22, Indian Institute of
Information Technology, Kalyani,
India

Shared Memory Based
JITLink Memory Manager
(May 2022-Sep 2022)

Surya Somayyajula

IRIS-HEP Fellow,
Improve Cling’s packaging system: Cling Packaging Tool University of

(May 2022-Sep 2022). Slides: here. Wisconsin-Madison.

Project Objectives Rewriting the CPT

¢ Impraovementsto be made Using a different program execution starting point

o Fixing plaftform issues . . . _ . o | added a new if name block separate from all the program functions
m Thismostly entails fixing builds with LLVM on Linux and Mac OS Revamping the argument parser

m Debian packaging creation : - . , :
m Fixing Windows builds o | added an option to only build Cling and not package it, as users want this option

o Rewriting the CPT itself o | added some dependent arguments so that errors would be caught before any building is done

m Afull rewrite of the CPT, fixing old features as well as adding new features, and o lalsorenamed some arguments for consistency
getting rid of non-functional options | added a feature to specify the number of CPU cores to use when building Cling

o Rewriting documentation

m Adding new documentation for rewrite and fixes, as well as rewriting old R . _ e e
documentation for overriding variables o Implemented parameter passing style for a couple of global variables where possible, as most of

o Fixing miscellaneous issues the global variables are deeply embedded in the CPT
m Fixing specific software dependency issues Made the CPT more flake8 compliant, although almost all of the flake8 errors are due to
the lines being longer than 79 characters

Reduced global variable mutation

13

https://compiler-research.org/assets/presentations/CaaS_Weekly_10_08_2022_Surya_Somayyajula_Improving_the_Cling_Packaging_Tool.pdf

Manish Kausik H

o . . GSoC22, Indian
Add Initial Integration of Clad with Enzyme Institute of Technology
(May 2022-Sep 2022). Slides: here and here. Final report. Blog Post. Bhubaneswar
Implementation Ideas Integrating Enzyme Reverse Mode with Clad
2. Reverse Mode Differentiation Code Generation 1. ldentifying a request for using Enzyme with Clad (PR #460)

e DiffCollector::VisitCallExpr must set a variable in the DiffRequest Object,
that states whether the user wants to use enzyme or not.

e ReverseModeVisitior::Derive must create a new branch for Enzyme
DiffRequests, with a constant template code

e Mustlink the Code generated by ReverseModeVisitor::Derive with the
CladFunction class (Need to explore this)

e How can DiffCollector::VisitCallExpr recognise the request for use of
enzyme based on a template parameter? (Need to explore this)

2. Integrating Enzyme as a static library in Clad (PR #466)

3. Generating code for Enzyme Reverse mode with clad (PR #486)

-+

4. Verifying Enzyme generated derivatives with clad(PR #488)

clad::gradient(f) //Normal Calling convention
clad: :gradient<clad: :opts: :use_enzyme>(f) //Calling Convention for using Enzyme within Clad

14

https://compiler-research.org/assets/presentations/CaaS_Weekly_01_05_2022_Manish_Add_Initial_Integration_of_Clad_with_Enzyme.pdf
https://compiler-research.org/assets/presentations/CaaS_Weekly_31_08_22_Manish-Integration_of_Enzyme_with_Clad_Final_Presentation.pdf
https://compiler-research.org/assets/docs/Manish_Kausik_H_GSoC22_Report.pdf
https://hepsoftwarefoundation.org/gsoc/blogs/2022/blog_CompilerResearch-ManishKausik.html

Matheus lzvekov

Preserve type sugar for member access on template specializations GSoC22
(May 2022-SepNov 2022). Slides: here and here.

In simplest terms, with an example, we want this to work:

;i < |age

t Baz {};

Bar [[gnu::aligned()]] = Baz;

ising type = typename foo<Bar>::type;

// Clang as it stands will fail below assert

'/ as the foo template will only be instantiated

// with the structural part of the argument,

// which the Bar alias 1is not.

// So It only sees Baz, the aligned attribute is never seen.
static_assert(alignof(type) == ');

Accomplishments

We submitted the RFC at https://discourse.llvm.org/t/rfc-improvins
diagnhostics-with-template-specialization-resugaring/64224.

e We have positive feedback, people want to see this implemented
e We got one extra volunteer for reviewing.
e We got feedback that this work might influence debug info.

e We linked to the WIP patch in phabricator.
However, the patch is too big and we must work on splitting it up

15

https://compiler-research.org/assets/presentations/M_Izvekov-GSoC_Roadmap_1.html
https://compiler-research.org/assets/presentations/M_Izvekov-GSoC_Roadmap_2.html

Sunho Kim

GSoC22, De Anza
Write JITLink support for a new format/architecture (ELF/ AARCH64). College, Cupertino,
Slides: here and here. Final report. LSA
Issues of Old JIT Linker My project
e Some horrors e Problem: lack of platform/architecture support in JITLink to make it a viable
o hitps://github.com/llvm/llvm-project/blob/main/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeD replacement for old JIT infrastructures.
vIdELF.cpp#L 1217 (RuntimeDyldELF::processRelocationRef)
Linux (ELF) Mac (MachO) Windows (COFF)
ARM64 0 X
X86_64 0
RISCV X
4 4
 EEEEEEEEEEEEEE———————————————————— e ——————————

16

https://compiler-research.org/assets/presentations/CaaS_Weekly_08_06_2022_Sunho_Write_JITLink_support_for_a_new%20format_architecture.pdf
https://compiler-research.org/assets/presentations/CaaS_Weekly_10_08_2022_Sunho-Write_JITLink_Support_Current_Progress.pdf
https://compiler-research.org/assets/docs/Sunho_Kim_GSoC22_Report.pdf

Anubhab Ghosh

Shared Memory Based JITLink Memory Manager. Go0C22, Indian
. . Institute of Information
Slides: here. Final report. Technology, Kalyani,

The plan Design and Implementation
= orc::MemoryMapper interface: This is an interface to perform memory allccation, deallocation, setting memory
protections etc. that handles most platform-specific operations. This abstraction allows us to decouple the
transport for generated code from heap management making it simple for clients tec use different transport

¢ A MemoryMapper interface with implementations based on

o Shared memory mechanisms. (D127491)
® When both executor and controller process share same physical memory o orc::TnProcessMemoryMapper : This implementation is used when running code in the same process where the
o Regular memaory allocation APIs JITis runni'\g and uses sys::Memary APL. (0177491)
® When the resultant code is executed in the same process o orc::SharedMemoryMapper : This implementation is used when transferring code to a different executor
m Useful for unit tests precess and uses POSIX or Win32 shared memory APls. (D128544)
c EPC ® orc::MapperJITLinkMemoryManager : This class implements the jitlink::JITLinkMemoryManager interface and
®m Required when the executor and controller process run with different physical memory handies all allocations within a slab. (D130392)
m Resultant code is transferred to the executor process over the EPC channel * Memory coalescing to join two consecutive free ranges and reuse them. (D131831)
. . . e« llvm-jitlink tool integration:
e A JITLinkMemoryManager implementation that can use any MemoryMapper ! 7

5 MapperlITLinkMenoryManager with an InProcessMemoryMapper is used by default when executing the code in

o It will allocate large chunks of memary using MemoryMapper and divide into smaller chunks the same process as the JIT. (D132315)

o Better support for small code model by keeping everything close in memory

C

o MapperlITLinkMenoryManager with a SharedMemcryMapper can be optionally used when --use-shared-memcry
is passed. (D132369)

17

https://compiler-research.org/assets/presentations/CaaS_Weekly_08_06_2022_Sunho_Write_JITLink_support_for_a_new%20format_architecture.pdf
https://gist.github.com/argentite/b265db7604a5ba3c48783c42cefc6908

Thank you!

